This is an assignment question

So I know the Maclaurin series for ln (1+x), and it is

x - (x^2 )/2 + (x^3 ) /3 - (x^4 )/4....

And after doing some working, I think I found the Maclaurin series for ln (1-x)

-x - (x^2 )/2 - (x^3 )/3 - x(^4 )/4... (all negatives)

So ln(1+x)/(l-x) = ln(1+x)-ln(1-x)

which, when I subtract the series from one another, I get

2x + 2(x^3 )/3 + 2(x^5 )/5 + 2(x^7 )/7...

But this doesn't seem correct, as neither approximation is even remotely close to ln(1.5) (0.406 3dp)

Using five terms from ln(1+x) = 1.753

five terms from my series ln((1+x)/(1-x)) - it just gets continually larger...

Maybe I've got the correct answer and just haven't explained why ln(1+x) is more accurate. Any help?

Also, how do I find where it converges?