Hi,

A question asks to find a Maclaurin series for 1/(1+4x)

I know 1/(1+x) = 1 - x + x^2 - x^3 + x^4 - ...

Therefore 1/(1+4x) = 1 - 4x + (4x)^2 - (4x)^3 + (4x)^4 - ...= Sum(0, inf) (-1)^n * 4^n * x^n

And the answer key says that is correct. But I am confused, because isn't that just a power series representation? I thought Maclaurin and Taylor series representations had to be of the form [f^(n)(C)/n!]*(x-C)^n. There is no n! in my answer, so how is it a Maclaurin series representation?

tl;dr: What is the difference between a power series and maclaurin series representation?

Thanks