Hi all

I ask for your opinion on my solution to the following problem i have been trying to solve for too long (3~ hours):

"let w(x) be continuous for all x.

we define u(x) = 2+x^2+xw(x)

prove that u has a derivative at x=0."

So i did it like this:

u'(x) = 2x+w(x)+xw'(x)

u'(0) = w(0)

Since w is continuous for all x, w(0) exists, therefore u'(0) exists.

I don't know why but it doesn't "feel" complete as a proof...it was "too easy" and something seems to be missing im not sure what.

is it necessary to add that "the limit of u' as x approaches 0 = w(0) = u'(0)"?

Thank you for your help.