Results 1 to 2 of 2

Math Help - L'Hospital's questions

  1. #1
    Newbie
    Joined
    Sep 2012
    From
    Maryland
    Posts
    15

    L'Hospital's questions

    I've done a bunch of practice for my quiz tomorrow. However, I can't seem to find the answers to one of the worksheets so i can check my answers.

    1. lim x->0 1-cox/x^2. My answer 1/2

    2. lim x-> infinity ln(x)^2/x. My answer 0

    3. lim x-> infinity (3x-sqrt(9x^2+2x+1)). Bit lost on this one. -sqrt(9x^2+2x+1)/(1/3x). 1/2(9x^2+2x+1)^-1/2*(18x+2)/(-3/9x^2)

    4. lim x->0+ sqrt(x)*(ln(x)). My answer 0.

    5. lim x ->infinity (3x-2/3x+1)^x No clue

    6. lim x-> infinty (e^x+2)^1/x My answer y=e^1/3

    7. lim x-> 0 arctan(x)/x^2 My answer 0

    8. lim x->0 sinh(x)/sin(x) My answer 1.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,905
    Thanks
    765

    Re: L'Hospital's questions

    Hello, Alucard2487!

    1.\;\lim_{x\to0}\frac{1-\cos x}{x^2}\quad\text{ My answer: }\tfrac{1}{2} . Correct!

    2.\;\lim_{x\to\infty}\frac{\ln x^2}{x}\quad\text{ My answer: } 0 . Good!

    3.\;\lim_{x\to\infty}\left(3x-\sqrt{9x^2+2x+1}\right)

    Multiply by \tfrac{3x+\sqrt{9x^2+2x+1}}{3x+\sqrt{9x^2+2x+1}}

    \frac{3x-\sqrt{9x^2+2x+1}}{1}\cdot \frac{3x + \sqrt{9x^2+2x+1}}{3x+\sqrt{9x^2+2x+1}} \;=\;\frac{9x^2 - (9x^2 + 2x + 1)}{3x + \sqrt{9x^2+2x+1}}

    . . . . =\;\frac{-2x-1}{3x+\sqrt{9x^2+2x +1}} \qquad \text{ This goes to }\frac{\infty}{\infty}

    Apply L'Hopital: . \frac{-2}{3 + \frac{1}{2}\frac{18x+2}{\sqrt{9x^2+2x+1}}} \;=\;\frac{-2}{3 + \frac{9x+2}{\sqrt{9x^2+2x+1}}}

    Divide numerator and denominator of that bottom fraction by x:

    . . . . \frac{-2}{3 + \frac{9+\frac{2}{x}}{\sqrt{9 + \frac{2}{x} + \frac{1}{x^2}}}}

    \text{Therefore: }\:\lim_{x\to\infty} \frac{-2}{3 + \frac{9+\frac{2}{x}}{\sqrt{9 + \frac{2}{x} + \frac{1}{x^2}}}} \;=\;\frac{-2}{3+ \frac{9+0}{\sqrt{9+0+0}}} \;=\;\frac{-2}{3+\frac{9}{3}} \;=\;\frac{-2}{6} \;=\;-\frac{1}{3}




    4.\;\lim_{x\to0^+}\sqrt x\cdot\ln x \quad\text{ My answer: }0 . Yes!


    5.\;\lim_{x\to\infty}\left(\frac{3x-2}{3x+1}\right)^x

    \text{Let }\,y \;=\;\left(\frac{3x-2}{3x+1}\right)^x

    \text{Take logs: }\:\ln y \;=\;\ln\left(\frac{3x-2}{3x+1}\right)^x \;=\;x\ln\left(\frac{3x-2}{3x+1}\right)

    . . . . . . . . \ln y \;=\;x\big[\ln(3x-2) - \ln(3x+1)\big]


    Differentiate: . \frac{y'}{y} \;=\;x\left(\frac{3}{3x-2} - \frac{3}{3x+1}\right) + \ln\left(\frac{3x-2}{3x+1}\right)

    . . . . . . . . . . . \frac{y'}{y} \;=\;\frac{3x}{(3x-2)(3x-1)} + \ln\left(\frac{3x-2}{3x+1}\right)


    Divide numerator and denominator of the first fraction by x^2.
    Divide numerator and denominator of the second fraction by x.

    . . . \frac{\frac{3}{x}}{(3-\frac{2}{x})(3+\frac{1}{x})} + \ln\left(\frac{3-\frac{2}{x}}{3 + \frac{1}{x}}\right)


    Hence: . \lim_{x\to\infty} \left[\frac{\frac{3}{x}}{(3-\frac{2}{x})(3+\frac{1}{x})} + \ln\left(\frac{3-\frac{2}{x}}{3 + \frac{1}{x}}\right)\right]

    . . . . . =\;\frac{0}{(3-0)(3+0)} + \ln\left(\frac{3-0}{3+0}\right)

    . . . . . =\;0 + \ln1 \;=\;0+0 \;=\;0


    We have: . \lim_{x\to\infty} \ln y \:=\:0

    Therefore: . \lim_{x\to\infty}y \;=\;e^0 \;=\;1


    It's very late here . . . *yawn*
    I'll finish up tomorrow.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. L'Hospital help?
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 6th 2010, 07:24 PM
  2. l'hospital
    Posted in the Calculus Forum
    Replies: 7
    Last Post: September 24th 2008, 03:18 PM
  3. L'Hospital
    Posted in the Calculus Forum
    Replies: 22
    Last Post: July 2nd 2008, 03:54 PM
  4. L'Hospital
    Posted in the Calculus Forum
    Replies: 4
    Last Post: July 2nd 2008, 11:26 AM
  5. L'Hospital
    Posted in the Calculus Forum
    Replies: 1
    Last Post: June 23rd 2008, 04:27 PM

Search Tags


/mathhelpforum @mathhelpforum