• Apr 1st 2013, 09:07 PM
Steelers72
http://www.webassign.net/cgi-perl/sy...n%20%3D%208%20
(a) Use the Trapezoidal Rule to approximate the given integral with the specified value of n. (Round your answer to six decimal places.)
(b) Use the Midpoint Rule to approximate the given integral with the specified value of n. (Round your answer to six decimal places.)
(c) Use Simpson's Rule to approximate the given integral with the specified value of n. (Round your answer to six decimal places.)

I got a) 2.789267
b)1.581091
c)3.038070

my work:
a) T8= (1/8)*[ fourthroot(5+(1/4)2)+2*fourthroot(5+(1/2)2)+2*fourthroot(5+(3/4)2)+2*fourthroot(5+1)+2*fourthroot(5+(5/4)2)+2*fourthroot(5+(6/4)2)+2*fourthroot(5+(7/4)2)+fourthroot(9) ]

b)M8= (1/8)*[ fourthroot(5+(1/8)^2) +fourthroot(5+(3/8)^2)+fourthroot(5+(5/8)^2)+fourthroot(5+(7/8)^2)+fourthroot(5+(9/8)^2)+fourthroot(5+(11/8)^2)+fourthroot(5+(13/8)^2)+fourthroot(5+(15/8)^2) ]

c) S8=(1/12)*[ 0+ 4*fourthroot(5+(1/4)2)+2*fourthroot(5+(1/2)2)+4*fourthroot(5+(3/4)2)+2*fourthroot(5+1)+4*fourthroot(5+(5/4)2)+2*fourthroot(5+(6/4)2)+4*fourthroot(5+(7/4)2)+fourthroot(9) ]

Any help greatly greatly appreciated; this problem is driving me crazy.

Thanks!
• Apr 2nd 2013, 09:23 AM
hollywood
For Simpson's rule, you should have $\sqrt[4]{5}$ instead of 0: the correct value is 3.162682.