1. Vector field is given with:

$\displaystyle \vec{F}=(3x^2yz+y^3z+xe^{-x})\hat{i}+(3xy^2+x^3z+ye^x)\hat{j}+(x^3y_y^3x_xy^ 2z^2)\hat{k}$

fin $\displaystyle \oint\vec{F}\cdot\mathrm{d}\vec{r} $ on a closed contour OABCDEO given with (0,0,0), (1,0,0), (1,0,1), (1,1,1), (1,1,0), (0,1,0), (0,0,0)

by linear roads.

2. Vector field is given with:

$\displaystyle \vec{F}=F_0\bigg[\bigg(\frac{y^3}{3a^3}+\frac{y}{a}e^{\frac{xy}{a^2 }}+1\bigg)\hat{i}+\bigg(\frac{xy^2}{z^3}+\frac{x+y }{a}e^{xy}{a^2}\bigg)\hat{j}+\frac{z}{a}e^{\frac{x y}{a^2}}\hat{k}\bigg] $

Using Stokes theorem find:

$\displaystyle \oint \vec{F} \cdot \mathrm{d}\vec{r} $

by curve which is perimeter of square ABCD given with A=(0,a,0), B=(a,a,0), C=(a, 3a, 0), D=(0,3a,0).

help pls