Results 1 to 3 of 3

Math Help - Simplifying an integration problem involving a radical.

  1. #1
    Member
    Joined
    Oct 2009
    From
    Detroit
    Posts
    195
    Thanks
    5

    Simplifying an integration problem involving a radical.

    r(t)=\vec{i}+t^2\vec{j}+t^3\vec{k}

    The problem wants me to find the arc length of r(t) as t moves from 0 to 1.

    definition of the length of a curve (were | r(t)^\prime| refers to the magnitude of the vector r(t)^\prime);
    L=\int_{a}^{b} | r(t)^\prime|dt

    so r(t)^\prime=\langle 0 + 2t + 3t^2\rangle and L=\int_{0}^{1} [0^2+(2t)^2+(3t^2)^2]^\frac{1}{2}dt

    I'm pretty lost on this one. I've tried a few different things and haven't gotten any farther. Have I just made an early mistake that I'm not seeing?
    Last edited by bkbowser; February 12th 2013 at 05:48 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,831
    Thanks
    1602

    Re: Simplifying an integration problem involving a radical.

    \displaystyle \begin{align*} r'(t) \end{align*} will be a VECTOR, not a scalar value. \displaystyle \begin{align*} r'(t) = \left < \frac{d}{dt} \left( 1 \right) , \frac{d}{dt} \left(  t^2 \right) , \frac{d}{dt} \left( t^3 \right) \right > =  < 0, 2t, 3t^2 > \end{align*}. So

    \displaystyle \begin{align*} \left| r'(t) \right| &= \sqrt{ 0^2 + \left( 2t \right)^2 + \left( 3t^2 \right)^2 } \\ &= \sqrt{ 0 + 4t^2 + 9t^4 } \\ &= \sqrt{ 9t^4 + 4t^2 } \\ &= \sqrt{ t^2 \left( 9t^2 + 4 \right) } \\ &= t \, \sqrt{9t^2 + 4} \end{align*}

    So your arclength will be found by \displaystyle \begin{align*} \int_0^1{ t \, \sqrt{9t^2 + 4} \, dt } = \frac{1}{18}\int_0^1{18t \, \sqrt{9t^2 + 4}\,dt} \end{align*}. Let \displaystyle \begin{align*} u = 9t^2 + 4 \implies du = 18t\, dt  \end{align*} and note that \displaystyle \begin{align*} u(0) = 4 \end{align*} and \displaystyle \begin{align*} u(1) = 13 \end{align*}, then the integral becomes

    \displaystyle \begin{align*} \frac{1}{18}\int_0^1{18t\, \sqrt{ 9t^2 + 4}\,dt} &= \frac{1}{18}\int_4^{13}{ \sqrt{u}\,du } \\ &= \frac{1}{18} \int_4^{13}{u^{\frac{1}{2}}\,du} \\ &= \frac{1}{18} \left[ \frac{2}{3} u^{\frac{3}{2}} \right] _4 ^{13} \\ &= \frac{1}{27} \left( 13^{\frac{3}{2}} - 4^{\frac{3}{2}} \right) \\ &= \frac{1}{27} \left( 13\, \sqrt{13} - 8 \right) \end{align*}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Oct 2009
    From
    Detroit
    Posts
    195
    Thanks
    5

    Re: Simplifying an integration problem involving a radical.

    Quote Originally Posted by Prove It View Post
    \displaystyle \begin{align*} r'(t) \end{align*} will be a VECTOR, not a scalar value. \displaystyle \begin{align*} r'(t) = \left < \frac{d}{dt} \left( 1 \right) , \frac{d}{dt} \left(  t^2 \right) , \frac{d}{dt} \left( t^3 \right) \right > =  < 0, 2t, 3t^2 > \end{align*}. So

    \displaystyle \begin{align*} \left| r'(t) \right| &= \sqrt{ 0^2 + \left( 2t \right)^2 + \left( 3t^2 \right)^2 } \\ &= \sqrt{ 0 + 4t^2 + 9t^4 } \\ &= \sqrt{ 9t^4 + 4t^2 } \\ &= \sqrt{ t^2 \left( 9t^2 + 4 \right) } \\ &= t \, \sqrt{9t^2 + 4} \end{align*}

    So your arclength will be found by \displaystyle \begin{align*} \int_0^1{ t \, \sqrt{9t^2 + 4} \, dt } = \frac{1}{18}\int_0^1{18t \, \sqrt{9t^2 + 4}\,dt} \end{align*}. Let \displaystyle \begin{align*} u = 9t^2 + 4 \implies du = 18t\, dt  \end{align*} and note that \displaystyle \begin{align*} u(0) = 4 \end{align*} and \displaystyle \begin{align*} u(1) = 13 \end{align*}, then the integral becomes

    \displaystyle \begin{align*} \frac{1}{18}\int_0^1{18t\, \sqrt{ 9t^2 + 4}\,dt} &= \frac{1}{18}\int_4^{13}{ \sqrt{u}\,du } \\ &= \frac{1}{18} \int_4^{13}{u^{\frac{1}{2}}\,du} \\ &= \frac{1}{18} \left[ \frac{2}{3} u^{\frac{3}{2}} \right] _4 ^{13} \\ &= \frac{1}{27} \left( 13^{\frac{3}{2}} - 4^{\frac{3}{2}} \right) \\ &= \frac{1}{27} \left( 13\, \sqrt{13} - 8 \right) \end{align*}
    Thank you. That makes perfect sense.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Simplifying a radical
    Posted in the Algebra Forum
    Replies: 7
    Last Post: November 27th 2011, 07:27 PM
  2. Simplifying the Radical?
    Posted in the Algebra Forum
    Replies: 1
    Last Post: December 11th 2009, 06:55 PM
  3. simplifying under a radical
    Posted in the Algebra Forum
    Replies: 1
    Last Post: September 21st 2009, 06:04 PM
  4. simplifying a radical
    Posted in the Algebra Forum
    Replies: 1
    Last Post: September 23rd 2008, 12:03 PM
  5. simplifying radical
    Posted in the Algebra Forum
    Replies: 4
    Last Post: May 16th 2008, 04:15 AM

Search Tags


/mathhelpforum @mathhelpforum