Consider the given function.
Evaluate the Riemann sum for 2 ≤ x ≤ 14, with six subintervals, taking the sample points to be left endpoints.
Part 1 of 3
We must calculate L6 =
6 f(xi−1) Δx = [f(x0) + f(x1) + f(x2) + f(x3) + f(x4) + f(x5)] Δx,where x0, x1, x2, x3, x4, x5 represent the left hand endpoints of six equal sub-intervals of [2, 14] i=1
Since we wish to estimate the area over the interval [2, 14]
using 6 rectangles of equal widths, then each rectangle will have width Δx=2
We wish to find L6 = (2)[ f(x0) + f(x1) + f(x2) + f(x3) + f(x4) + f(x5)].
Since x0, x1, x2, x3, x4, x5
represent the left-hand endpoints of the six sub-intervals of [2, 14],
then we must have the following.
================================================== ================================================== ===========
I know that delta x= 14-2/6 which is 2. I'm not sure how to get these values:
x0,x1,x2,x3,x4,x5. Do I have to make the graph?
I appreciate any advice or insight!!