Results 1 to 14 of 14
Like Tree5Thanks
  • 1 Post By ibdutt
  • 1 Post By ILikeSerena
  • 1 Post By Prove It
  • 1 Post By ILikeSerena
  • 1 Post By Prove It

Math Help - integral with sqrt in denominator

  1. #1
    Boo
    Boo is offline
    Junior Member
    Joined
    Jan 2013
    From
    Pizza
    Posts
    57

    integral with sqrt in denominator

    Hello!
    Please, what should I do with the sqrt in the denominator?

    \int \frac{dx}{\sqrt{2+3x-2x^2}}
    Please, help someone!!!!
    Many thanks!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Jul 2012
    From
    INDIA
    Posts
    828
    Thanks
    209

    Re: integral with sqrt in denominator

    Workout the denominator in the form ∫▒〖1/√(a^2-x^2 ) OR 〗 ∫▒〖1/√(a^2+x^2 ) 〗and then use the formula
    ∫▒〖1/√(a^2-x^2 ) dx = sin^(-1)⁡〖x/a+C OR 〗 ∫▒〖1/√(a^2+x^2 ) 〗 dx= log⁡〖|x+ 〗 √(a^2+x^2 )|+C〗
    2 + 3x – 2x2 = 2 – 2[ x2 - 3/2 x] = 2 – 2[ x2 - 3/2 x + 〖(3/4)〗^2- 〖(3/4)〗^2]
    = 2 – 2[ 〖( x- 3/4)〗^2- 〖(3/4)〗^2]
    = 2[ 1 – 〖( x- 3/4)〗^2+ 9/16]
    = 2[25/16 – 〖( x- 3/4)〗^2]
    Etc…
    Thanks from Boo
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: integral with sqrt in denominator

    Quote Originally Posted by Boo View Post
    Hello!
    Please, what should I do with the sqrt in the denominator?

    \int \frac{dx}{\sqrt{2+3x-2x^2}}
    Please, help someone!!!!
    Many thanks!
    Well, let's see if we can find a known anti-derivative for an expression with a square root in the denominator.
    Hmm, we know that the anti-derivative of 1 \over \sqrt{1 - u^2} is \arcsin u.
    This looks a bit like it.

    Can you perhaps write the argument of the square root in the form a(1-(bx-c)^2)?

    After that you can make the substitution u=bx-c.
    Thanks from Boo
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Boo
    Boo is offline
    Junior Member
    Joined
    Jan 2013
    From
    Pizza
    Posts
    57

    Re: integral with sqrt in denominator

    Thank u, both!!!
    Well, 2+3x-2x^2=1-(bx-c)^2
    1+3x-2x^2=-(bx-c)^2= - (b^2x^2-2bc+c^2)
    =-b^2+2bc-c^2
    dont see the soution: -c^2should be 1 then...
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,494
    Thanks
    1393

    Re: integral with sqrt in denominator

    Quote Originally Posted by Boo View Post
    Hello!
    Please, what should I do with the sqrt in the denominator?

    \int \frac{dx}{\sqrt{2+3x-2x^2}}
    Please, help someone!!!!
    Many thanks!
    \displaystyle \begin{align*} \int{\frac{dx}{\sqrt{2 + 3x - 2x^2}}} &= \int{\frac{dx}{\sqrt{-2\left( x^2 - \frac{3}{2}x - 1 \right)}}} \\ &= \int{\frac{dx}{\sqrt{-2\left[ x^2 - \frac{3}{2}x + \left( -\frac{3}{4} \right)^2 - \left( -\frac{3}{4} \right)^2 - 1 \right]}}} \\ &= \int{\frac{dx}{\sqrt{-2 \left[ \left( x - \frac{3}{4} \right)^2 - \frac{25}{16}  \right] }}} \\ &= \frac{1}{\sqrt{2}} \int{ \frac{dx}{\sqrt{\frac{25}{16} - \left( x - \frac{3}{4} \right)^2 }} } \end{align*}

    Now make the substitution \displaystyle \begin{align*} x - \frac{3}{4} = \frac{5}{4}\sin{\theta} \implies dx = \frac{5}{4}\cos{\theta}\,d\theta \end{align*} and the integral becomes

    \displaystyle \begin{align*} \frac{1}{\sqrt{2}} \int{ \frac{dx}{\sqrt{ \frac{25}{16} - \left( x - \frac{3}{4} \right)^2 }} } &= \frac{1}{\sqrt{2}} \int{ \frac{ \frac{5}{4}\cos{\theta}\,d\theta }{ \sqrt{ \frac{25}{16} - \left( \frac{5}{4}\sin{\theta} \right)^2 } } } \\ &= \frac{1}{\sqrt{2}}\int{ \frac{ \frac{5}{4}\cos{\theta}\,d\theta }{ \sqrt{ \frac{25}{16} - \frac{25}{16}\sin^2{\theta} } } } \\ &= \frac{1}{\sqrt{2}} \int{ \frac{\frac{5}{4}\cos{\theta}\,d\theta}{ \sqrt{ \frac{25}{16} \left( 1 - \sin^2{\theta} \right) } } } \\ &= \frac{1}{\sqrt{2}} \int{ \frac{ \frac{5}{4}\cos{\theta}\,d\theta }{ \sqrt{ \frac{25}{16}\cos^2{\theta} } } } \\ &= \frac{1}{\sqrt{2}} \int{ \frac{ \frac{5}{4}\cos{\theta}\,d\theta }{ \frac{5}{4}\cos{\theta} } } \\ &= \frac{1}{\sqrt{2}} \int{1\,d\theta} \\ &= \frac{1}{\sqrt{2}} \theta + C \\ &= \frac{1}{\sqrt{2}} \arcsin{ \left[ \frac{4}{5} \left( x - \frac{3}{4} \right) \right] } + C \end{align*}
    Thanks from Boo
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Boo
    Boo is offline
    Junior Member
    Joined
    Jan 2013
    From
    Pizza
    Posts
    57

    Re: integral with sqrt in denominator

    I shoudl solve it like this:

    2+3x-2x^2= (25/8) (1-(x-3/4)^2/(25/16)

    and put in:

    t= 4(x-3/4)/5

    huh...any help???
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: integral with sqrt in denominator

    You have left out the factor a...

    But let's see:

    2+3x-2x^2

    \quad = -2(x^2 -\frac 32 x - 1)

    \quad = -2((x-\frac 34)^2 - \frac 9{16} - 1)

    \quad = +2(\frac{25}{16} - (x - \frac 34)^2)

    \quad = +2 \cdot \frac{25}{16}(1 - \frac{16}{25}(x - \frac 34)^2)

    \quad = \frac{25}{8}(1 - (\frac 45 x - \frac 35)^2)


    So... substitute:

    u = \frac 45 x - \frac 35
    Thanks from Boo
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Boo
    Boo is offline
    Junior Member
    Joined
    Jan 2013
    From
    Pizza
    Posts
    57

    Re: integral with sqrt in denominator

    Please how did u get:

    x-\frac{3}{4}=\frac{5}{4}sin\alpha
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: integral with sqrt in denominator

    Quote Originally Posted by Boo View Post
    Please how did u get:

    x-\frac{3}{4}=\frac{5}{4}sin\alpha
    Can you substitute it?
    If you do, I think your question will be answered.
    It's a smart choice for the substitution.
    Follow Math Help Forum on Facebook and Google+

  10. #10
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,494
    Thanks
    1393

    Re: integral with sqrt in denominator

    Quote Originally Posted by Boo View Post
    Please how did u get:

    x-\frac{3}{4}=\frac{5}{4}sin\alpha
    Experience. Basically when you see something of the form \displaystyle \begin{align*} \sqrt{ a^2 - \left( x - b \right)^2 } \end{align*} in the denominator and you can't do a u-substitution, then a substitution of \displaystyle \begin{align*} x - b = a\sin{\theta} \end{align*} is appropriate, as it will simplify using the Pythagorean Identity and then cancel with its own derivative of \displaystyle \begin{align*} a\cos{\theta} \end{align*}, making the integration unbelievably easy.
    Thanks from Boo
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: integral with sqrt in denominator

    Quote Originally Posted by Prove It View Post
    Experience. Basically when you see something of the form \displaystyle \begin{align*} \sqrt{ a^2 - \left( x - b \right)^2 } \end{align*} in the denominator and you can't do a u-substitution, then a substitution of \displaystyle \begin{align*} x - b = a\sin{\theta} \end{align*} is appropriate, as it will simplify using the Pythagorean Identity and then cancel with its own derivative of \displaystyle \begin{align*} a\cos{\theta} \end{align*}, making the integration unbelievably easy.
    As an alternative I propose:

    \int {dx \over \sqrt{2+3x-2x^2}} = ...

    = \int {dx \over \sqrt{\frac{25}{8}(1-(\frac 45 x - \frac 35)^2)}}

    = \sqrt{\frac{8}{25}} \int {dx \over \sqrt{1-(\frac 45 x - \frac 35)^2}}

    = \sqrt{\frac{8}{25}} \cdot \frac 54 \arcsin(\frac 45 x - \frac 35) + C

    = {1 \over \sqrt{2}} \arcsin(\frac 45 x - \frac 35) + C

    Why introduce a sine, or a substitution for that matter, when you can get straight to the answer?
    Follow Math Help Forum on Facebook and Google+

  12. #12
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,494
    Thanks
    1393

    Re: integral with sqrt in denominator

    Quote Originally Posted by ILikeSerena View Post
    As an alternative I propose:

    \int {dx \over \sqrt{2+3x-2x^2}} = ...

    = \int {dx \over \sqrt{\frac{25}{8}(1-(\frac 45 x - \frac 35)^2)}}

    = \sqrt{\frac{8}{25}} \int {dx \over \sqrt{1-(\frac 45 x - \frac 35)^2}}

    = \sqrt{\frac{8}{25}} \cdot \frac 54 \arcsin(\frac 45 x - \frac 35) + C

    = {1 \over \sqrt{2}} \arcsin(\frac 45 x - \frac 35) + C

    Why introduce a sine, or a substitution for that matter, when you can get straight to the answer?
    It depends whether or not you prefer reading a result from tables of integrals, or if you prefer being able to get TO those results from the tables. I think it shows a much deeper understanding of how integration works to be able to do the substitution.
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Boo
    Boo is offline
    Junior Member
    Joined
    Jan 2013
    From
    Pizza
    Posts
    57

    Re: integral with sqrt in denominator

    PLEASE; HOW DID U GET .

    x-b=asin\alpha?
    Many Thanks-stuck at basic things!!!
    Follow Math Help Forum on Facebook and Google+

  14. #14
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,494
    Thanks
    1393

    Re: integral with sqrt in denominator

    Quote Originally Posted by Boo View Post
    PLEASE; HOW DID U GET .

    x-b=asin\alpha?
    Many Thanks-stuck at basic things!!!
    Like I told you, it comes with experience. Let's just take a look at the arbitrary integral \displaystyle \begin{align*} \int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{a^2 - \left[ a\sin{(\theta)} \right]^2}}} \end{align*}.

    Notice that it looks extremely complicated. One might think that since there is a sine function in the integrand and the cosine function (sine's derivative) is a multiple, it might be appropriate to do a substitution. So if we let \displaystyle \begin{align*} x = a\sin{(\theta)} \implies dx = a\cos{(\theta)}\,d\theta \end{align*}, then we would have

    \displaystyle \begin{align*} \int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{a^2 - \left[ a\sin{(\theta)} \right]^2 }}} &= \frac{1}{a}\int{\frac{ a\cos{ (\theta) }\,d\theta}{ \sqrt{a^2 - \left[ a\sin{ ( \theta ) } \right]^2 }}} \\ &= \frac{1}{a}\int{\frac{dx}{\sqrt{a^2 - x^2}}} \end{align*}

    But this does NOT help us (in fact, it gets us to almost the exact same integral that we were trying to find in your original post!) so a different tactic is required.

    You should be well aware of the Pythagorean Identity in trigonometry: \displaystyle \begin{align*} \sin^2{(\theta)} + \cos^2{(\theta)} \equiv 1 \end{align*}. We can use this fact to help us simplify the integrand. Notice that this means \displaystyle \begin{align*} \cos^2{(\theta)} \equiv 1 - \sin^2{(\theta)} \end{align*}. Can you see that we have almost this exact quantity in the denominator of the starting integral in this post?

    \displaystyle \begin{align*} \int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{ a^2 - \left[ a\sin{(\theta)} \right]^2 }}} &= \int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{ a^2 - a^2\sin^2{(\theta)} }}} \\ &= \int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{a^2 \left[ 1 - \sin^2{(\theta)} \right] }}} \\ &= \int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{a^2 \cos^2{(\theta)}}}} \\ &= \int{ \frac{ \cos{ ( \theta ) } \, d\theta }{ |a| \cos{ ( \theta ) } } } \\ &= \frac{1}{|a|}\int{d\theta} \end{align*}

    which is an EXTREMELY easy quantity to integrate.


    So that means that when you have something of the form \displaystyle \begin{align*} \int{\frac{dx}{\sqrt{a^2 - x^2}}} \end{align*} or similar, it is appropriate to use the substitution \displaystyle \begin{align*} x = a\sin{(\theta)} \end{align*} due to the fact that the denominator simplifies to a cosine function by Pythagoras, and you also end up with a cosine function in the derivative which it cancels with, giving you an extremely easy quantity (such as a constant) to integrate.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Tough Integral sqrt(x-sqrt(x^2-4))
    Posted in the Calculus Forum
    Replies: 6
    Last Post: March 26th 2012, 04:26 AM
  2. Integral of sin^3 (sqrt(x)) / (sqrt(x))
    Posted in the Calculus Forum
    Replies: 5
    Last Post: January 21st 2010, 04:48 PM
  3. limit with integral in denominator
    Posted in the Calculus Forum
    Replies: 4
    Last Post: February 22nd 2009, 10:55 AM
  4. Replies: 0
    Last Post: September 10th 2008, 07:53 PM
  5. Replies: 11
    Last Post: January 6th 2008, 09:33 AM

Search Tags


/mathhelpforum @mathhelpforum