1) Differentiatef(x) = sinx ; f'(x) = cosx

Y = x^2sinxtanx

g(x) = tanx ; g'(x) = sec^2

So I get:

Y' = 2cosxtanx + x^2sinxsec^2

2) Find an equation of the tangent line to the curve at the given point:

P(0,1)

Y = 1/(sinx + cosx)

Y' = 2sinx/(sinx + cosx)^2