Re: anti-derivative problem

looks fine to me ...

$\displaystyle F(x) = \frac{7}{6x^6} - \frac{4}{x^2} + \frac{17}{6}$

$\displaystyle F(1) = \frac{7}{6} - \frac{24}{6} + \frac{17}{6} = 0$

$\displaystyle F'(x) = \frac{8}{x^3} - \frac{7}{x^7}$

Re: anti-derivative problem

hmmm, thanks! i was entering the answer into an online test, so it could be something i entered wrong (typo) or the online system has a bug.

Re: anti-derivative problem

Hi-

I Thought some might benefit from seeing all the steps to this problem:

Given:

f ' (x) = 8 / x^3 - 7 / x^7 Where f(1)=0

Rewrite:

f ' (x) = 8*x^(-3) - 7*x^(-7)

Integrate:

8*x^(-3+1) 7*x^(-7+1)

= ∫ -------------- - ---------------

(-3+1) (-7+1)

= 8*x^(-2)/(-2) - 7*x^(-6)/(-6)

= -4*x^(-2) + (7/6)*x^(-6) + C

Answer:

f (x) = -4 / x^2 + 7 / 6*x^6 + C

At f (1) = 0

f (1) = -4 / (1)^2 + 7 / 6*(1)^6 + C = 0

= -4 + 7/6 + C = 0

Common Denominator:

= -24 / 6 + 7 / 6 + C = 0

= -17 / 6 + C = 0

C = 17 / 6

Answer:

f (x) = -4 / x^2 + 7 / 6*x^6 + 17 / 6

Re: anti-derivative problem

OP - please write down here EXACTLY how you entered this into your online test. Chances are you have a syntax error somewhere.