Suppose f is differentiable on -infinity and +infinity(everywhere) and assume that it has a local extreme value at the point (2,0). Let g(x)=xf(x)+1 and h(x)=xf(x)+x+1 for all values of x.
Evaluate g(2), h(2), g'(2) and h'(2).
Suppose f is differentiable on -infinity and +infinity(everywhere) and assume that it has a local extreme value at the point (2,0). Let g(x)=xf(x)+1 and h(x)=xf(x)+x+1 for all values of x.
Evaluate g(2), h(2), g'(2) and h'(2).