Originally Posted by

**MarkFL2** You are being asked to compute:

$\displaystyle \lim_{n\to\infty}\left[A_0\left(1+\frac{r}{n} \right)^n \right]=L$

where $\displaystyle A_0,r$ are constants.

$\displaystyle A_0\lim_{n\to\infty}\left[\left(1+\frac{r}{n} \right)^n \right]=L$

$\displaystyle \lim_{n\to\infty}\left[\left(1+\frac{r}{n} \right)^n \right]=\frac{L}{A_0}$

To use L'Hôpital's rule, so you need to get it into the indeterminate form $\displaystyle \frac{\infty}{\infty}$ or $\displaystyle \frac{0}{0}$.

Try taking the natural log of both sides, and use the properties of limits and logs to get one of these forms.