Results 1 to 3 of 3

Math Help - plase help

  1. #1
    Member
    Joined
    Sep 2005
    Posts
    136

    plase help

    <1> Lim ln(2x-1) / sin (pi)x
    x->1

    <2>Lim [((x+1)/ln(x+1)) -1/x)]
    x->0
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by bobby77
    <1> Lim ln(2x-1) / sin (pi)x
    x->1
    What is:

    <br />
\lim_{x \rightarrow 1} \frac{\ln(2x-1)}{\sin(\pi x)}?<br />

    As:

    <br />
\lim_{x \rightarrow 1} \ln(2x-1)=\ln(1)=0<br />
,

    and

    <br />
\lim_{x \rightarrow 1} \sin(\pi x)=0<br />

    we need to use L'Hopital's rule to evaluate the limit so we need:

    <br />
\lim_{x \rightarrow 1} \frac{d}{dx}\ln(2x-1)=\lim_{x \rightarrow 1} \frac{2}{2x-1}=2<br />
,

    and:

    <br />
\lim_{x \rightarrow 1} \frac{d}{dx}\sin(\pi x)=\lim_{x \rightarrow 1}\pi \cos(\pi x)=- \pi<br />
.

    Then L'Hopital's rule tells us that:

    <br />
\lim_{x \rightarrow 1} \frac{\ln(2x-1)}{\sin(\pi x)}=\frac{\lim_{x \rightarrow 1} \frac{d}{dx}\ln(2x-1)}{\lim_{x \rightarrow 1} \frac{d}{dx}\sin(\pi x)}=-\frac{2}{\pi}<br />
.

    Finally checking with numerical experiments indicates that this is right.

    RonL
    Last edited by CaptainBlack; March 1st 2006 at 06:03 AM.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by bobby77
    <2>Lim [((x+1)/ln(x+1)) -1/x)]
    x->0
    What is:

    <br />
\lim_{x \rightarrow 0} \left\{ \frac{x+1}{\ln(x+1)}-\frac{1}{x} \right\}?<br />

    This is indeterminate as it is so rearrange:

    <br />
\lim_{x \rightarrow 0} \left\{ \frac{x(x+1)-\ln(x+1)}{x \ln(x+1)} \right\}<br />
.

    Now apply L'Hopital's rule:

    <br />
\lim_{x \rightarrow 0} \left\{ \frac{x(x+1)-\ln(x+1)}{x \ln(x+1)} \right\}= <br />
\frac{\lim_{x \rightarrow 0} \frac{d}{dx}\{x(x+1)-\ln(x+1)\}}{\lim_{x \rightarrow 0} \frac{d}{dx} \{x \ln(x+1)\} }=\frac{0}{0}<br />

    which is indeterminate, so we need the second derivatives:

    <br />
\lim_{x \rightarrow 0} \left\{ \frac{x(x+1)-\ln(x+1)}{x \ln(x+1)} \right\}= <br />
\frac{\lim_{x \rightarrow 0} \frac{d^2}{dx^2}\{x(x+1)-\ln(x+1)\}}{\lim_{x \rightarrow 0} \frac{d^2}{dx^2} \{x \ln(x+1)\} }=\frac{3}{1}=1.5<br />

    Which again checks out numericaly

    RonL
    Follow Math Help Forum on Facebook and Google+

Search Tags


/mathhelpforum @mathhelpforum