. What is the exact value of ? Give your answer as a fraction or whole number

$\displaystyle \int^3_0 \frac{1}{(x+4)(x+5)} $

I have spilt this into partial fractions, and got

$\displaystyle 1 = A(x+5) + B(x+4) $

which gives

A=1

B=-1

so I have

$\displaystyle \int^3_0 \frac{1}{x+4} -\frac{1}{x+5} $

so now integrating i get

$\displaystyle ln(x+4)-ln(x+5) $

$\displaystyle ln \frac{x+4}{x+5} $

I than evaluate this answer from 3-0 and i get $\displaystyle ln\frac{7}{8} - ln\frac{4}{5} $

so I get 0.0936