Results 1 to 2 of 2

Math Help - Please help with the Algebra in finding the dervitives of these two parametric eqns

  1. #1
    Junior Member
    Joined
    Aug 2012
    From
    Maryland
    Posts
    45

    Please help with the Algebra in finding the dervitives of these two parametric eqns

    5) x = e^√t y= t - ln(tē) Correct Answer : 2√t(1-(2/t))/(e^√t)

    8) x = 2sin2t y = 2 sint Correct Answer: cost/2cos2t *note I see the trig identitiy sin2t = 2cos*sin but I don't see how it helps

    I get the concept that you have to put the derivitive of y over x to get the parametric derivitive but I just can't get the alrebra to work.
    Last edited by skinsdomination09; October 3rd 2012 at 04:26 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,547
    Thanks
    539

    Re: Please help with the Algebra in finding the dervitives of these two parametric eq

    Hello, skinsdomination09!

    The algebra is not hard.
    I wish you had shown your work.


    5)\;\begin{Bmatrix}x &=& e^{\sqrt{t}} \\ y&=& t -\ln(t^2)\end{Bmatrix}

    \text{Answer: }\:\frac{2\sqrt{t}\left(1 - \frac{2}{t}\right)}{e^{\sqrt{t}}}

    \text{We have: }\:\begin{Bmatrix}y &=& t - 2\ln(t) & \Rightarrow & \frac{dy}{dt} &=& 1 - \frac{2}{t} \\ x &=& e^{t^{\frac{1}{2}}} & \Rightarrow & \frac{dx}{dt} &=& e^{t^{\frac{1}{2}}}\!\cdot\!\frac{1}{2}t^{-\frac{1}{2}} \end{Bmatrix}

    \frac{dy}{dx} \;=\;\frac{\frac{dy}{dt}}{\frac{dx}{dr}} \;=\; \frac{1-\frac{2}{t}}{\frac{e^{\sqrt{t}}}{2\sqrt{t}}} \;=\;\frac{2\sqrt{t}(1-\frac{2}{t})}{e^{\sqrt{t}}}




    8)\;\begin{Bmatrix}x &=& 2\sin2t \\ y &=& 2\sin t\end{Bmatrix}

    \text{Answer: }\:\frac{\cos t}{2\cos2t}

    We have: . \begin{Bmatrix}y &=& 2\sin t & \Rightarrow& \frac{dy}{dt} &=& 2\cos t \\ \\[-3mm] x &=& 2\sin2t & \Rightarrow & \frac{dx}{dt} &=& 4\cos2t \end{Bmatrix}

    Therefore: . \frac{dy}{dx} \;=\;\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \;=\;\frac{2\cos t}{4\cos 2t} \;=\;\frac{\cos t}{2\cos2t}
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: April 22nd 2010, 03:43 AM
  2. directional dervitives.
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 22nd 2009, 05:52 PM
  3. First and Second partial dervitives
    Posted in the Calculus Forum
    Replies: 1
    Last Post: March 31st 2009, 02:28 PM
  4. Replies: 0
    Last Post: February 18th 2009, 10:36 PM
  5. Replies: 1
    Last Post: October 7th 2008, 07:48 PM

Search Tags


/mathhelpforum @mathhelpforum