i got one more limit problem that i cannot figure out
(x^2 sin x) / (1 - cos^2x) x is 0
how do i prove this
PS i got to the part (x^2 / sinx)
but i dont know how to convert it into sin(x) / (x)
Write it as $\displaystyle \displaystyle \begin{align*} x \cdot \frac{x}{\sin{x}} \end{align*}$. Since $\displaystyle \displaystyle \begin{align*} \lim_{x \to 0} \frac{\sin{x}}{x} = 1 \end{align*}$, so does $\displaystyle \displaystyle \begin{align*} \lim_{x \to 0}\frac{x}{\sin{x}} \end{align*}$. The reason is that for very small values of x, $\displaystyle \displaystyle \begin{align*} \sin{x} \approx x \end{align*}$.