Originally Posted by

**grillage** I must have made a careless mistake in here somewhere as the book says the answer should be 0.158. Please put me out of my misery. Also, if you know how to do the latex for the "between" part on line 4 then I'd love to know.

$\displaystyle \\\int_{0}^{\frac{\pi }{3}}sin^{2}xcos^{2}x\: dx\\[15]\frac{1}{4}\int_{0}^{\frac{\pi }{3}}\left ( 1+cos2x \right )\left ( 1-sin2x \right )\: dx\\[15]\frac{1}{4}\int_{0}^{\frac{\pi }{3}}1-sin2x+cos2x-cos2xsin2x\: dx\\[15]\left [ \frac{1}{4}\left ( x+\frac{1}{2}cos2x+\frac{1}{2}sin2x-\frac{1}{4}sin^{2}2x \right ) \right ]between\: 0,\, \frac{\pi }{3}\\[15]\frac{1}{4}\left ( \frac{\pi }{3}-\frac{1}{4}+\frac{\sqrt{3}}{4}-\frac{3}{16}-\frac{1}{2} \right )\\[15]= 0.136$