Originally Posted by
skeeter $\displaystyle (10.09+\sin{x})^2 = 10.09^2 + 20.18\sin{x} + \sin^2{x}$
$\displaystyle \int 10.09^2 + 20.18\sin{x} + \sin^2{x} \, dx =$
$\displaystyle \int 10.09^2 + 20.18\sin{x} \, dx + \int \sin^2{x} \, dx =$
no :/ can u show me an example pls i have exercises like this to complete and i would like an example to follow so i can do my remaining questions
using the power reduction identity for $\displaystyle \sin^2{x}$ ...
$\displaystyle \int 10.09^2 + 20.18\sin{x} \, dx + \frac{1}{2} \int 1 - \cos(2x) \, dx$
can you finish?