Results 1 to 2 of 2

Thread: Help on Integrals

  1. #1
    Newbie
    Joined
    Jul 2012
    From
    Peoria
    Posts
    1

    Help on Integrals

    Can anybody help me with these two and explain it? I have tried a million times and can't get it right.
    Attached Thumbnails Attached Thumbnails Help on Integrals-picture-1.png   Help on Integrals-picture-2.png  
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848

    Re: Help on Integrals

    Hello, xmizzdelaneyx!

    $\displaystyle \text{Evaluate: }\:\int x\sqrt[4]{x+15}\,dx$

    Let $\displaystyle \sqrt[4]{x+15} \:=\:u \quad\Rightarrow\quad x+15 \:=\:u^4 \quad\Rightarrow\quad x \:=\:u^4-15 \quad\Rightarrow\quad dx \:=\:4u^3\,du $

    Substitute: .$\displaystyle \int(u^4-5)\cdot u \cdot (4u^3\,du) \;=\; 4\int(u^8 - 5u^4)\,du $

    Can you finish it now?




    $\displaystyle \text{Evaluate: }\:\int^3_{\frac{1}{7}}4x\ln(6x)\,dx$

    By parts: .$\displaystyle \begin{Bmatrix}u &=& \ln(7x) && dv &=& 4x\,dx \\ du &=& \frac{dx}{x} && v &=& 2x^2 \end{Bmatrix}$

    We have: .$\displaystyle 2x^2\ln(7x) - \int(2x^2)\left(\frac{dx}{x}\right) \;=\;2x^2\ln(7x) - 2\int x\,dx $

    . . . . . . .$\displaystyle =\;2x^2\ln(7x) - x^2\bigg]^3_{\frac{1}{7}}$


    Therefore: .$\displaystyle \bigg[2\cdot9\cdot\ln(21) - 9\bigg] - \bigg[2\cdot\tfrac{1}{49}\cdot\ln(1) - \tfrac{1}{49}\bigg]$

    . . . . . . $\displaystyle =\;\;18\ln(21) - 9 - 0 + \tfrac{1}{49} \;\;=\;\;18\ln(21) - \tfrac{440}{9}$
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Contour Integrals (to Evaluate Real Integrals)
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: Jan 17th 2011, 09:23 PM
  2. Replies: 1
    Last Post: Dec 6th 2009, 07:43 PM
  3. Integrals and Indefinite Integrals
    Posted in the Calculus Forum
    Replies: 3
    Last Post: Nov 9th 2009, 04:52 PM
  4. Integrals, #2
    Posted in the Calculus Forum
    Replies: 2
    Last Post: Aug 7th 2009, 12:18 AM
  5. help! integrals!
    Posted in the Calculus Forum
    Replies: 3
    Last Post: Mar 6th 2008, 08:54 AM

Search Tags


/mathhelpforum @mathhelpforum