Thread: Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)

1. Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)

Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)

2. Re: Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)

We want to minimize the distance $D$ between $(x, x^2+3)$ and $(1,5)$. We know that

$D = \sqrt{(x-1)^2 + (x^2 + 3 - 5)^2} = \sqrt{2x^2 - 6x + 5}$

To make things easier, $D^2 = 2x^2 - 6x + 5$. To find the x that minimizes $D$, you may as well find the x that minimizes $D^2$. So find the (x,y) coordinate that minimizes $D^2$.

3. Re: Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)

Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)
Let required point be (x,y) Let D= distance from (1,5) So D^2=(x-1)^2+(y-5)^2 But (x,y) is on curve so y=x^2+3 giving D^2=(x-1)^2+(x^2-2)^2
Want D^2 to be minimum (then D will be minimum) So want derivative=0
Hence want 2(x-1)+2(x^2-2)2x=0 2x-2+4x^3-8x=0 4x^3-6x-2=0 Using a numerical change of sign method I get x=1,366 so y=4.866

4. Re: Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)

I dont agree with your expression for D

5. Re: Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)

Whoops, I did $(x-2)^2$ instead of $(x^2-2)^2$...

Anyway, $D^2 = (x-1)^2 + (x^2 - 2)^2 = x^4 - 3x^2 - 2x + 5$. Take derivative with respect to x and set to zero:

$4x^3 - 6x - 2 = 0$.

There are three real solutions for x: x = -1, -.366, and 1.366. Check each (x,y) point to see which one is closest.

6. Re: Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)

Find the point on the parabola y = x^2 + 3 that is closest to the point (1,5)
Here is an entirely different way to solve it
Find a point $(a,b)$ on the curve where the tangent is perpendicular to the normal through $(1,5)$.

Thus solve $\frac{b-5}{a-1}=\frac{-1}{2a}~\&~b=a^2+3$.

,
,

,

,

,

,

,

,

,

coordinates of point on y=x 2 which is closest to y^2=4x

Click on a term to search for related topics.