Results 1 to 3 of 3
Like Tree1Thanks
  • 1 Post By Prove It

Math Help - Laplace ^(-1) of (s^3)/(s-e^-1)^4 ?

  1. #1
    Newbie
    Joined
    May 2012
    From
    Romania
    Posts
    8

    Laplace ^(-1) of (s^3)/(s-e^-1)^4 ?

    Laplace ^(-1) of (s^3)/(s-e^-1)^4
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,409
    Thanks
    1294

    Re: Laplace ^(-1) of (s^3)/(s-e^-1)^4 ?

    Quote Originally Posted by mariusrb View Post
    Laplace ^(-1) of (s^3)/(s-e^-1)^4
    I suggest you let \displaystyle \begin{align*} u = s - e^{-1} \end{align*}, then

    \displaystyle \begin{align*} s &= u + e^{-1} \\ s^3 &= \left(u + e^{-1}\right)^3 \\ &= u^3 + 3e^{-1}u^2 + 3e^{-2}u + e^{-3} \\ &= \left(s - e^{-1}\right)^3 + 3e^{-1}\left(s - e^{-1}\right)^2 + 3e^{-2}\left(s - e^{-1}\right) + e^{-3} \end{align*}

    then you can write

    \displaystyle \begin{align*} \mathcal{L}^{-1}\left\{ \frac{s^3}{\left(s - e^{-1}\right)^4} \right\} &= \mathcal{L}^{-1}\left\{ \frac{\left(s - e^{-1}\right)^3 + 3e^{-1}\left(s - e^{-1}\right)^2 + 3e^{-2}\left(s - e^{-1}\right) + e^{-3}}{\left(s - e^{-1}\right)^4} \right\} \\ &= \mathcal{L}^{-1} \left\{ \frac{1}{s - e^{-1}} \right\} + 3e^{-1}\mathcal{L}^{-1}\left\{ \frac{1}{\left(s - e^{-1}\right)^2} \right\} + 3e^{-2}\mathcal{L}^{-1}\left\{ \frac{1}{\left(s - e^{-1}\right)^3} \right\} + e^{-3}\mathcal{L}^{-1}\left\{ \frac{1}{\left( s - e^{-1} \right)^4} \right\} \end{align*}

    and you can now apply the shift theorem.
    Thanks from mariusrb
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    May 2012
    From
    Romania
    Posts
    8

    Re: Laplace ^(-1) of (s^3)/(s-e^-1)^4 ?

    Good idea.Thanks!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. PDE by Laplace
    Posted in the Differential Equations Forum
    Replies: 24
    Last Post: September 2nd 2010, 03:35 PM
  2. Laplace/Inverse Laplace Questions
    Posted in the Differential Equations Forum
    Replies: 2
    Last Post: August 14th 2010, 11:29 AM
  3. laplace help
    Posted in the Differential Equations Forum
    Replies: 7
    Last Post: August 13th 2010, 05:19 AM
  4. laplace PDE
    Posted in the Differential Equations Forum
    Replies: 2
    Last Post: February 5th 2010, 08:17 AM
  5. laplace eqn help
    Posted in the Differential Equations Forum
    Replies: 1
    Last Post: August 12th 2008, 12:21 AM

Search Tags


/mathhelpforum @mathhelpforum