Find the derivative: (do not simplify)
f(x) = sec(sqrt(1+(2x/tanx)))
Is this the correct answer?
tan (sqrt(1+(2x/tanx))) sec (sqrt(1+(2x/tanx)))1/2(1+(2x/tanx)))^-1/2 ((2tanx-2xsec^x)/(tan^2x))
sorry I don't know how to make this look any better.
Find the derivative: (do not simplify)
f(x) = sec(sqrt(1+(2x/tanx)))
Is this the correct answer?
tan (sqrt(1+(2x/tanx))) sec (sqrt(1+(2x/tanx)))1/2(1+(2x/tanx)))^-1/2 ((2tanx-2xsec^x)/(tan^2x))
sorry I don't know how to make this look any better.
Hello, tmas!
$\displaystyle \text{Find the derivative (do not simplify): }\:f(x) \:=\: \sec\!\left(\!\sqrt{1+\frac{2x}{\tan x}}\right)$
$\displaystyle \text{Is this the correct answer?}$
.$\displaystyle f'(x) \;=\;\tan\!\left(\!\sqrt{1+\frac{2x}{\tan x}}}\right)\sec\!\left(\!\sqrt{1+\frac{2x}{\tan x}}\right) \cdot\frac{1}{2}\cdot \left(1+\frac{2x}{\tan x}\right)^{-\frac{1}{2}}\!\left(\frac{2\tan x-2x\sec^2x}{\tan^2x}\right)$
Correct! . . . Good work!