Results 1 to 2 of 2
Like Tree1Thanks
  • 1 Post By Prove It

Math Help - Integral of ∫dx/(a^2+ 〖tan〗^2 (x))= ?

  1. #1
    Newbie
    Joined
    May 2012
    From
    turkey
    Posts
    1

    Integral of ∫dx/(a^2+ 〖tan〗^2 (x))= ?

    Help please


    ∫dx/(a^2+ 〖tan〗^2 (x))= ?

    Tanks
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,520
    Thanks
    1404

    Re: Integral of ∫dx/(a^2+ 〖tan〗^2 (x))= ?

    Quote Originally Posted by sltvm2007 View Post
    Help please


    ∫dx/(a^2+ 〖tan〗^2 (x))= ?

    Tanks
    \displaystyle \begin{align*} \int{\frac{dx}{a^2 + \tan^2{x}}} &= \int{\frac{\sec^2{x}\,dx}{\sec^2{x}\left(a^2 + \tan^2{x}\right)}} \\ &= \int{\frac{\sec^2{x}\,dx}{\left(1 + \tan^2{x}\right)\left(a^2 + \tan^2{x}\right)}} \\ &= \int{\frac{du}{\left(1 + u^2\right)\left(a^2 + u^2\right)}}\textrm{ after making the substitution } u = \tan{x} \implies du = \sec^2{x}\,dx \\ &= \int{\frac{1}{\left(a^2 - 1\right)\left(1 + u^2\right)} - \frac{1}{\left(a^2 - 1\right)\left(a^2 + u^2\right)}\,du} \\ &= \frac{1}{a^2 - 1}\int{\frac{1}{1 + u^2}- \frac{1}{a^2 + u^2}\,du} \\ &= \frac{1}{a^2 - 1}\left(\arctan{u} - \frac{1}{a}\arctan{\frac{u}{a}}\right) + C \\ &= \frac{1}{a^2 - 1}\left[\arctan{\left(\tan{x}\right)} - \frac{1}{a}\arctan{\left(\frac{\tan{x}}{a}\right)}  \right] + C \\ &= \frac{1}{a^2 - 1}\left[x - \frac{1}{a}\arctan{\left(\frac{\tan{x}}{a}\right)}  \right] + C \end{align*}
    Thanks from sltvm2007
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: June 12th 2011, 02:29 PM
  2. Replies: 2
    Last Post: May 21st 2010, 11:37 AM
  3. an integral ∫[x^(1/2)][e^(-x/2)]dx
    Posted in the Calculus Forum
    Replies: 2
    Last Post: March 26th 2010, 09:05 PM
  4. ∫x(x+4)^(-2) dx Find the indefinite integral
    Posted in the Calculus Forum
    Replies: 6
    Last Post: September 13th 2009, 05:00 PM
  5. Replies: 3
    Last Post: July 23rd 2009, 12:33 PM

Search Tags


/mathhelpforum @mathhelpforum