# Convergence

• May 22nd 2012, 11:33 AM
iPod
Convergence
I have attached the question.

I have expanded $(1+h)^n$ using the binomial theorem, and the question after it I assume they want me to use the very same theorem to prove the convergence.

So this is what I had done;

$(n+1)^{1/n}=1+h \rightarrow n+1=(1+h)^n=1+nh+\frac{n!}{2!(n-2)!}+...+h^n$

I'm not sure how to prove convergence from then on, but I am guessing the Sandwich Rule would need to be used here at one point.
Any hints/tips?
• May 22nd 2012, 02:20 PM
emakarov
Re: Convergence
Let $h_n$ be such that $(n+1)^{1/n}=1+h_n$. From what you wrote, $1+nh_n+n(n-1)/2\cdot h_n^2<1+n$, so...
• May 22nd 2012, 02:26 PM
iPod
Re: Convergence
I understand how you derived the above inequality, however I'm not sure where to go from there - I'm not sure how you apply it to derive any convergence.
• May 22nd 2012, 03:17 PM
emakarov
Re: Convergence
Can you show that $h_n for some decreasing function $f$? You don't have to solve the quadratic inequality $nh_n+n(n-1)/2\cdot h_n^2 for $h_n$; just find some function $f$.