I asked this before and the guy said it was divergent; however, it's clearly not. I just wanted some help on how to do it.

I need to find an N(epsilon) for the following sequence such that for all n>=N(epsilon) the absolute value of the nth element is less than epsilon >0:

n(sqrt((n^4)+4) - n^2) (i.e. the n is multiplied to both the sqrt((n^4)+4)) and n^2 with subtraction between those two terms. I know that it converges to zero. I just don't know how to find a sequence (it must be strictly decreasing) that bounds it and makes finding the N(epsilon) easy.

I appreciate any help.