$\displaystyle g(x)= 3^x * ln(x) $
$\displaystyle g'(x)= (3^x)' (ln(x)) + (3^x) (ln(x))' $
$\displaystyle g'(x)= (3^xln3)(ln(x)) + (3^x)(\frac{1}{x}) $
$\displaystyle g'(x)= (3^xln3)(ln(x)) + \frac{3^x}{x} $ \\can be simplified or stop here?
$\displaystyle g(x)= 3^x * ln(x) $
$\displaystyle g'(x)= (3^x)' (ln(x)) + (3^x) (ln(x))' $
$\displaystyle g'(x)= (3^xln3)(ln(x)) + (3^x)(\frac{1}{x}) $
$\displaystyle g'(x)= (3^xln3)(ln(x)) + \frac{3^x}{x} $ \\can be simplified or stop here?