evaluate \int\frac{\sin\sqrt{x}{\sqrt{x}dx pls somebody should help on the equation above, confuse, thanks
Follow Math Help Forum on Facebook and Google+
Did you mean $\displaystyle \int\frac{\sin\sqrt{x}}{\sqrt{x}}dx$ ? use $\displaystyle u=\sqrt{x}$. Oh and put Code: [tex]...........[ /tex] around your LaTeX.
[tex]...........[ /tex]
$\displaystyle \int \frac{\sin\left(\sqrt{x}\right)}{\sqrt{x}}dx$ Let $\displaystyle \sqrt{x}=t$
Originally Posted by lawochekel evaluate \int\frac{\sin\sqrt{x}{\sqrt{x}dx pls somebody should help on the equation above, confuse, thanks $\displaystyle I=\int \frac{\sin{\sqrt x}}{\sqrt x} \,dx$ $\displaystyle \sqrt x =t \Rightarrow \frac{1}{2\sqrt x} dx=dt \Rightarrow \frac{1}{\sqrt x} dx=2dt$ Hence : $\displaystyle I=2\cdot \int \sin t\,dt=-2\cdot \cos t +C=-2\cdot \cos{\sqrt x} +C$
View Tag Cloud