Whether it is possible to present the sum of two composed, as work of these composed, erected in some degrees:$\displaystyle a+b = a^{f(x)}b^{g(y)}$
$\displaystyle f(x)=?$
$\displaystyle g(y)=?$
Whether it is possible to present the sum of two composed, as work of these composed, erected in some degrees:$\displaystyle a+b = a^{f(x)}b^{g(y)}$
$\displaystyle f(x)=?$
$\displaystyle g(y)=?$
$\displaystyle a+b = a^{f(x)}b^{g(y)} $
$\displaystyle \ln (a+b) = \ln (a^{f(x)}b^{g(y)}) $
$\displaystyle \ln (a+b) = \ln(a^{f(x)} ) + \ln (b^{g(y)}) $
$\displaystyle \ln(a^{f(x)} ) = \ln (a+b) - \ln (b^{g(y)}) $
$\displaystyle f(x) = \frac{ \ln\left( \frac{a+b}{b^{g(y)}}\right))}{\ln (a) }$
same way u can find g(y)