Struggling with the following:

Prove the identity $$ \nabla = e_{r}(e_{r} \cdot \nabla) + e_{\theta}(e_{\theta} \cdot \nabla) + e_{\phi}(e_{\phi} \cdot \nabla).$$ Given the vector fields $F=F_{r}e_{r}+F_{\theta}e_{\theta}+ F_{\phi}e_{\phi}$ show that$$ \nabla \cdot F=\frac{1}{r^{2}}\frac \partial {{dr}}(r^{2}F_r)+\frac{1}{rsin\theta}\frac \partial {d \theta}(sin\theta F_\theta)+\frac{1}{rsin\theta}\frac \partial {d\phi} $$Any help will be most appreciated, many thanks.