The exact value of $\displaystyle \int_{0}^{3 \pi} \sin x \ dx = 2 $. How large must $\displaystyle n $ be for the Trapezoidal approximation $\displaystyle T_n $ to satisfy $\displaystyle |E_T| \leq (2-S_n) $?
The exact value of $\displaystyle \int_{0}^{3 \pi} \sin x \ dx = 2 $. How large must $\displaystyle n $ be for the Trapezoidal approximation $\displaystyle T_n $ to satisfy $\displaystyle |E_T| \leq (2-S_n) $?
Do you have a formula for the bound on the error in using the trapezoidal rule?