1. ## Total Differential

Find the total differential:

$\displaystyle u=arcsen \sqrt\frac{xz}{y}$
$\displaystyle du=?$

My teacher give to us this formule: $\displaystyle \Delta f (x,y) \approx \frac{\delta f}{\delta x} |p\Delta x + \frac{\delta f}{\delta y}|p\Delta y + \frac{\delta f}{\delta z}|p\Delta z$

but in this exercice he just dont give the point "P" and the valous of $\displaystyle \Delta n$
i use this formule: $\displaystyle \Delta f (x,y) \approx \frac{\delta f}{\delta x} + \frac{\delta f}{\delta y} + \frac{\delta f}{\delta z}$
and the result was:
part 1: http://i.imgur.com/W46hP.jpg
part 2: http://i.imgur.com/uYTek.jpg
is this correct??

2. ## Re: Total Differential

Hi again Chipset3600!

The proper formula is:

$\displaystyle df(x,z,y) = {\partial f \over \partial x}dx + {\partial f \over \partial y}dy + {\partial f \over \partial z}dz$

I have some trouble understanding your scans, but they do not look right.

Let's define $\displaystyle g(x,y,z)=\sqrt{xz \over y}$.
And let's define $\displaystyle u(v)=\arcsin v$.

What is $\displaystyle {\partial g \over \partial x}$?

And $\displaystyle {du \over dv}$?

3. ## Re: Total Differential

dg/dx is the first derivative of G as a function of x

and du/dv is the total diferencial of function u, rite??

4. ## Re: Total Differential

Originally Posted by Chipset3600
dg/dx is the first derivative of G as a function of x
Yes.
It's called the partial derivative of g as a function of x.

Originally Posted by Chipset3600
and du/dv is the total diferencial of function u, rite??
It's just the derivative of u with respect to v.

5. ## Re: Total Differential

well did a mistake in the formule, buts this means that my result isn's correct ?

6. ## Re: Total Differential

Well, I couldn't make sense of your first scan, so just now I skipped to the second one.

And yes!
Your partial derivatives are correct (except for $\displaystyle \partial u \over \partial y$ that should have a minus sign).

However, for the total derivative du you shouldn't have added them as you did.
Each of them should be multiplied by dx, dy, and dz respectively.

7. ## Re: Total Differential

One more time thank you very match!
We most talk!