Originally Posted by

**Soroban** Hello, piglet!

Did you do any of the arithmetic?

The numerator is: .$\displaystyle j\!\cdot\!2\pi (10^8)(10^2)(4\pi\times 10^{-7}) \;=\;8\pi^2j \times 10^3$

The denominator is: .$\displaystyle (9,64\times 10^{-3}) + 2\pi j(10^2\cdot 10^6)(8.854\times 10^{-12})$

. . . . . . . . . . . . . $\displaystyle =\;(9.64 \times 10^{-3}) + 2\pi j (8.854 \times 10^{-4}) $

. . . . . . . . . . . . . $\displaystyle =\;(2\cdot10^{-4})(48.2 + 4.427\pi j $

The fraction becomes: .$\displaystyle \frac{8\pi^2j \times 10^3} {(2\cdot 10^{-4})(48.2 + 4.427\pi j)} $

. . . . . . . . . . . . . . . $\displaystyle =\;\frac{4\pi^2j \times 10^7}{48.2 + 4.427\pi j} $

By the way, what are we **solving** for?