Find the Derivative of 3x^2-4x+5

lim x->0I got 3(x+Δx)^2-4(x+Δx)+5-(3x^2-4x+5)

Δx

lim x->0 =3(x^2+2xΔx+Δx)-4x-4Δx+5-3x^2+4x-5

Δx

lim x->0 =3x^2+6xΔx+3Δx^2-4x-4Δx+5-3x^2+4x-5

Δx

lim x->0 =6xΔx+3Δx-4

Δx

lim x->0 =Δx(6x+3Δx-4)

Δx

lim x->0 = 6x=3(0)-4

6x-4

Find an Equation of the Tangent Line to the Graph Above at the given point (2,9)

f(x) = 3x^2-4x+5

f`(x) = 6x-4

f`(x) = 6(2)-4 = 12-4 = 8

y-8=8(x-2)

y=8x-8

Are these right? If not can anyone help me?