Originally Posted by
SC313 Hi everyone,
The question is as follows: “Find the distance from the point Q (3, 5,-1) to the line x=3t, y= 3-2t, z= 2 + t. (Choose any two points P and R on the line, then consider the parallelogram determined by PQ and PR).
First, in order to find P, I set t = 3, and obtained the vector (-6, 8,-6). Similarly, to find R, I set t=5, and found the vector to be (15,-7, 7).
Second, I calculated PQ, received (-6, 8,-6) as the answer, and found PR (6,-4, 2).
Third, the cross product of PQ and PR was calculated to be (-8, 48,-24).
Fourth, the cross product of PQ and PR was placed into the distance formula, providing the answer of square root (2944). Afterwards, PR was calculated to be the square root of 56, using the distance formula as well.
The final answer I get is the square root of 368/7, or approximately 7.2506. The answer given by the instructor is the square root of 152/7, approximately 4.6599. The only difference I am able to see between the work completed by myself, and the work completed by the instructor is on order to find P, t = 0, and to find R, t=1.
Thank you in advance!