Results 1 to 3 of 3

Math Help - I'm having a lot of trouble with the Cauchy product of two infinite series

  1. #1
    s3a
    s3a is offline
    Super Member
    Joined
    Nov 2008
    Posts
    597

    I'm having a lot of trouble with the Cauchy product of two infinite series

    My work and the question along with a solution is attached. My work starts at #5 written in blue. I am also attaching the Cauchy Product Theorem from my book.

    I noticed that e^x has x^n for the x part whereas the sin(x) part has x^(2n+1) for the x part so I think that that is where my issue is but I don't know what to do about it.

    I'm supposed to get c_1 = 1 (which is the a_1 from method 1) but I get 5/6 instead.

    Any help in figuring out how to do #5 using "Method 2" would be greatly appreciated!
    Thanks in advance!
    Attached Files Attached Files
    Follow Math Help Forum on Facebook and Google+

  2. #2
    s3a
    s3a is offline
    Super Member
    Joined
    Nov 2008
    Posts
    597

    Re: I'm having a lot of trouble with the Cauchy product of two infinite series

    Is this a a rare question or something because nobody answers anywhere I ask?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,158
    Thanks
    597

    Re: I'm having a lot of trouble with the Cauchy product of two infinite series

    c1 = a0b1 + a1b0, right?

    the a0 term in the expansion of e^x (the constant term), is 1. the b1 term in the expansion of sin(x) (the "x" term) is 1.

    hence a0b1 = 1.

    the a1 term in the expansion of e^x (the "x term) is again 1. however, the b0 term in the expansion of sin(x) is 0, since sin(0)/0! = 0.

    hence a1b0 = 0, so c1 = 1 + 0 = 1.

    clearly c0 = a0b0 = 0, so the expansion for e^x(sin(x)) starts out: x +......

    let's move on to c2 = a0b2 + a1b1 + a2b0.

    we know right away that the a2b0 term is 0, we don't even need to look at a2. and we know that a0 = 1, so a0b2 = b2.

    but sin(x) has no "x^2" term, so b2 = 0, so a0b2 = 0. so c2 = a1b1, and we already know that a1 = b1 = 1,

    so our series starts out: x + x^2 +.....

    c3 is a bit more interesting (and a pain in the erm, neck, yeah that's it....).

    c3 = a3b0 + a2b1 + a1b2 + a0b3.

    well, all the "even" b terms are 0, so a3b0, a1b2 = 0.

    we know b1 = 1, and the a2 term is 1/2! = 1/2. we also know that a0 = 1, and the x^3 term in the expansion of sin(x) is -1/3! = -1/6

    so c3 = 1/2 - 1/6 = 1/3, so our series starts out x + x^2 + x^3/3 +.....

    see how it goes?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. [SOLVED] Nifty series (leads to infinite product of cos)
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: May 8th 2011, 12:06 PM
  2. product of two infinite series
    Posted in the Discrete Math Forum
    Replies: 1
    Last Post: April 6th 2010, 10:35 AM
  3. simple trouble with the Cauchy formula...
    Posted in the Calculus Forum
    Replies: 0
    Last Post: December 6th 2009, 07:58 AM
  4. An inverse question on Cauchy product of series
    Posted in the Differential Geometry Forum
    Replies: 6
    Last Post: August 27th 2009, 11:17 AM
  5. Cauchy Product
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 15th 2009, 03:55 AM

Search Tags


/mathhelpforum @mathhelpforum