Guys

The following question appears in the book Calculus, Early Transcendentals by Edwards and Penney:

"Prove that any two skew lines lie in parallel planes."

I am confused because:

1) Two skew lines can exist in non-parallel planes. Imagine two perpendicular planes intersecting at line L. Draw a line (L1) on the first plane where L1 is parallel to L. Draw another line (L2) on the second plane where L2 intersects L. L1 and L2 are skew lines because they are not parallel and do not intersect and yet the two planes are not parallel.

2) If what the question means is that of all the planes containing the first skew line (call this set of planes P1) and of all the planes containing the second skew line (call this set of planes P2), there exist a pair of parallel planes where one of them is an element of P1 and another an element of P2, the question becomes meaningless as this is true for any pair of lines in space.

Any clarification, hints, etc., will be highly appreciated.

Many thanks.