Results 1 to 2 of 2

Math Help - Cross product

  1. #1
    Junior Member
    Joined
    Jul 2011
    Posts
    28

    Cross product derivative

    Find 1st and 2nd derivative.

    f(t) = (\bold a \times t \bold b) \times (\bold a + t^2 \bold b)

    (\bold a \times t\bold b)' = (\bold a \times \bold b)
    (\bold a + t^2 \bold b)' = 2t \bold b

    so...

    f'(t) = (\bold a \times t\bold b) \times (\bold a + t^2\bold b)' + (\bold a \times t\bold b)' \times (\bold a + t^2\bold b)
    f'(t) = (\bold a \times t\bold b) \times (2t\bold b) + (\bold a \times \bold b) \times (\bold a + t^2\bold b)

    Here's where I'm having trouble.

    f''(t) = [(\bold a \times t\bold b) \times (2t\bold b)' + (\bold a \times t\bold b)' \times (\bold a + t^2\bold b) ] + [(\bold a \times \bold b) \times (\bold a + t^2\bold b)' + (\bold a \times \bold b)' \times (\bold a + t^2\bold b)] \;?

    Or should I use distributive property on that 2nd part?

    f''(t) = [(\bold a \times t\bold b) \times (2t\bold b)' + (\bold a \times \bold b)' \times (\bold a + t^2\bold b) ] + [(\bold a \times \bold b) \times (\bold a) + (\bold a \times \bold b) \times (t^2\bold b)]
    Last edited by deezy; September 11th 2011 at 07:34 AM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member
    Joined
    Mar 2010
    Posts
    280

    Re: Cross product

    We may write

    f(t) = (\bold a \times t \bold b) \times (\bold a + t^2 \bold b)=

    =t \; (\bold a \times \bold b) \times \bold a+t^3\; (\bold a \times \bold b) \times \bold b.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 4
    Last Post: September 2nd 2009, 04:07 AM
  2. Cross product and dot product relationships
    Posted in the Calculus Forum
    Replies: 4
    Last Post: October 15th 2008, 05:45 PM
  3. Cross Product
    Posted in the Calculus Forum
    Replies: 3
    Last Post: September 12th 2008, 10:55 AM
  4. Replies: 1
    Last Post: May 14th 2008, 11:31 AM
  5. Cross/Dot Product
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: April 3rd 2007, 12:33 PM

Search Tags


/mathhelpforum @mathhelpforum