1. The problem statement, all variables and given/known data

A field is given in spherical coordinates as F=[cos(θ)/r2]∙ar+[sin(θ)/r]∙aθ. Express F in terms of x, y, z, ax, ay, az

2. Relevant equations

ar∙ax=sin(θ)cos(∅)

ar∙ay=sin(θ)sin(∅)

ar∙az=cos(θ)

aθ∙ax=cos(θ)cos(∅)

aθ∙ay=cos(θ)sin(∅)

aθ∙az=-sin(θ)

x=r*sin(θ)*cos(∅)

y=r*sin(θ)*sin(∅)

z=r*cos(θ)

r=√(x2+y2+z2 )

cos(θ)=z/r

∅=tan-1(y/x)

3. The attempt at a solution

cos(θ)/r2*[sin(θ)cos(∅)ax+sin(θ)sin(∅)ay+cos(θ)az]+sin(θ)/r*[cos(θ)cos(∅)ax+cos(θ)cos(∅)ay-sin(θ)az]

z/r3*[sin(θ)cos(∅)ax+sin(θ)sin(∅)ay+cos(θ)az]+sin(θ)/r*[cos(θ)cos(∅)ax+cos(θ)cos(∅)ay-sin(θ)az]

(z*r)/r4*[sin(θ)cos(∅)ax+sin(θ)sin(∅)ay+cos(θ)az]+sin(θ)/r*[cos(θ)cos(∅)ax+cos(θ)cos(∅)ay-sin(θ)az]

z/r4*[xax+yay+zaz]+sin(θ)/r*[cos(θ)cos(∅)ax+cos(θ)cos(∅)ay-sin(θ)az]

z/(x2+y2+z2)3*[xax+yay+zaz]+sin(θ)/r*[cos(θ)cos(∅)ax+cos(θ)cos(∅)ay-sin(θ)az]

That's about as far as I've gotten. I'm not even sure if what I've done so far is on the right track or not :/ I'm not sure what to do with the 2nd half of this equation?