On the graphs it seems that
$\displaystyle \displaystyle\lim_{x\nearrow 0}f(x)=\lim_{x\searrow 0}=0$
$\displaystyle \displaystyle\lim_{x\nearrow 1}f(x)=0, \ \lim_{x\searrow 1}f(x)=2$
$\displaystyle \displaystyle\lim_{x\nearrow 0}g(x)=1, \ \lim_{x\searrow 0}g(x)=3$
$\displaystyle \displaystyle\lim_{x\nearrow 1}g(x)=\lim_{x\searrow 1}g(x)=2$
Now, use $\displaystyle \lim [f(x)+g(x)]=\lim f(x)+\lim g(x)$
and $\displaystyle \lim[f(x)g(x)]=\lim f(x)\cdot\lim g(x)$