$\displaystyle \int\limits_C \vec{F} . dr $
C: $\displaystyle x^2 + y^2 + z^2 = a^2$ intersection $\displaystyle y + z = a$
$\displaystyle \vec{F} = (3y +z, x + 4y, 2x + y)$
_____________________________________
$\displaystyle \nabla_X\vec {F} = (1, -1, -2)$
$\displaystyle \vec{r(u,v)} = (u, v, a-v)$
$\displaystyle \vec{n} = (0, 1, 1)$
I made the intersection between the sphere and the plane and got:
$\displaystyle \frac{x^2}{a^2} + \frac{(y-a)^2}{\frac{a^2}{2}} = 1 $
I know the area of this ellipse, but what is the area of this ellipse projected on the xy plane?
If I knew this could substitute an got the value:
$\displaystyle \iint\limits_D -3 dudv = -3A(D)$