# Thread: Horizontal line that divides the area in two equal parts

1. ## Horizontal line that divides the area in two equal parts

Hi Forum!
I have found this question:
Find the horizontal line y=k that divides the area bounded by the curves $y=x^2$ and $y=9$ in two equal parts.

What I thought:
Get the bounded area.
$\int_{-3}^{3} 9-x^2$

... $=36$

Divide it by two $=18$
and calculate that with line k equaling 18
$\int_{-3}^{3} 9-x^2-k=18$
$36-3k-3k=18$
$k=3$
But, if we calculate
$\int_{-3}^{3} 3-x^2=0$
This is because we are going to subtract the same area more than once, right?
The answer is probably something around 3 and 6 then.
I am not sure how to continue.

Thanks!

2. ## Re: Horizontal line that divides the area in two equal parts

Originally Posted by Zellator
Hi Forum!
I have found this question:
Find the horizontal line y=k that divides the area bounded by the curves $y=x^2$ and $x=9$ in two equal parts.

If this is the way you want to solve the problem then I think you mean

$\displaystyle \int_{0}^{9}x^2~dx = 243$

3. ## Re: Horizontal line that divides the area in two equal parts

Originally Posted by pickslides
If this is the way you want to solve the problem then I think you mean

$\displaystyle \int_{0}^{9}x^2~dx = 243$
Whaat, yes you are right. But I got the x for the y there!
I'm really sorry. hahahah
I really didn't think there would be anyone online now.

4. ## Re: Horizontal line that divides the area in two equal parts

Maybe y = 9? If so, why would the limits be [-3,3] when 'k' is introduced?

Maybe $\int_{-\sqrt{k}}^{\sqrt{k}}k - x^{2}\;dx = 18$?

5. ## Re: Horizontal line that divides the area in two equal parts

Originally Posted by TKHunny
Maybe y = 9? If so, why would the limits be [-3,3] when 'k' is introduced?

Maybe $\int_{-\sqrt{k}}^{\sqrt{k}}k - x^{2}\;dx = 18$?
Hi TKHunny!
I just solved it, it was a lot of work but I arrived at $\frac{9}{\sqrt[3]4}$

$\frac{\sqrt[3]{54^2}}{\sqrt[3]{16}} * \frac{\sqrt[3]{16}}{\sqrt[3]{16}}$

... $\frac{9}{\sqrt[3]4}$

All the best

,

,

,

,

,

,

,

,

,

,

,

,

,

,

# a horizontal line that divides the word into two equal parts is known as

Click on a term to search for related topics.