Results 1 to 7 of 7

Math Help - Tricky Integral

  1. #1
    Junior Member
    Joined
    Oct 2010
    Posts
    33

    Tricky Integral

    Hi

    I'm trying to integrate the following:

    \int_{-1}^{1} e^{-\left | t-x \right |} \ dx \ \ \ \ t \in \mathbb{R}

    can you help me how to split the integral up ?

    thx
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,829
    Thanks
    1602

    Re: Tricky Integral

    Quote Originally Posted by LHeiner View Post
    Hi

    I'm trying to integrate the following:

    \int_{-1}^{1} e^{-\left | t-x \right |} \ dx \ \ \ \ t \in \mathbb{R}

    can you help me how to split the integral up ?

    thx
    \displaystyle |t - x| = \begin{cases}t - x \textrm{ if }t - x \geq 0 \implies x \leq t \\ x - t \textrm{ if }t - x < 0 \implies x > t\end{cases}


    So

    \displaystyle \begin{align*} \int_{-1}^1{e^{-|t - x|}\,dx} &= \int_{-1}^1{e^{-(t - x)}\,dt} \textrm{ if }x \leq t \\ &= \int_{-1}^1{e^{x - t}\,dt}\end{align*}

    or

    \displaystyle \begin{align*} \int_{-1}^1{e^{-|t - x|}\,dx} &= \int_{-1}^1{e^{-(x - t)}\,dt} \textrm{ if }x > t\\ &= \int_{-1}^1{e^{t - x}\,dx}\end{align*}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6

    Re: Tricky Integral

    Quote Originally Posted by Prove It View Post
    \displaystyle |t - x| = \begin{cases}t - x \textrm{ if }t - x \geq 0 \implies x \leq t \\ x - t \textrm{ if }t - x < 0 \implies x > t\end{cases}


    So

    \displaystyle \begin{align*} \int_{-1}^1{e^{-|t - x|}\,dx} &= \int_{-1}^1{e^{-(t - x)}\,dt} \textrm{ if }x \leq t \\ &= \int_{-1}^1{e^{x - t}\,dt}\end{align*}

    or

    \displaystyle \begin{align*} \int_{-1}^1{e^{-|t - x|}\,dx} &= \int_{-1}^1{e^{-(x - t)}\,dt} \textrm{ if }x > t\\ &= \int_{-1}^1{e^{t - x}\,dx}\end{align*}
    You can't write that since you're making a condition on x depending on t, which is a silent variable (in the integral)...
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,829
    Thanks
    1602

    Re: Tricky Integral

    Quote Originally Posted by Moo View Post
    You can't write that since you're making a condition on x depending on t, which is a silent variable (in the integral)...
    We are told \displaystyle t\in \mathbf{R} , so it can be treated like a constant.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6

    Re: Tricky Integral

    Quote Originally Posted by LHeiner View Post
    Hi

    I'm trying to integrate the following:

    \int_{-1}^{1} e^{-\left | t-x \right |} \ dx \ \ \ \ t \in \mathbb{R}

    can you help me how to split the integral up ?

    thx
    \begin{aligned} \int_{-1}^1 e^{-|t-x|} ~dx &=\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} ~dx+\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\leq t\}} ~dx \end{aligned}

    For the first integral, we can write
    \begin{aligned}\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} ~dx &=\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} \bold{1}_{\{t\leq 1\}} ~dx+\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} \bold{1}_{\{t\geq 1\}} ~dx \\ &=\int_{\max(-1,t)}^1 e^{t-x} ~dx \bold{1}_{\{t\leq 1\}} + 0\cdot \bold{1}_{\{t\geq 1\}} \\ &=\begin{cases}\int_{\max(-1,t)}^1 e^{t-x} ~dx &\text{ if } t\leq 1 \\ 0&\text{ if } t\geq 1\end{cases}\end{array}


    Same thing for the second integral, except that we'll consider t\geq -1 and t\leq -1
    Last edited by Moo; June 19th 2011 at 11:30 AM.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6

    Re: Tricky Integral

    Quote Originally Posted by Prove It View Post
    We are told \displaystyle t\in \mathbf{R} , so it can be treated like a constant.
    Sure it's a constant, but hmmm how to explain it... Have a look at the indicator functions in my post above.
    Or try to think about it this way :
    You're defining an integral with respect to x. And then you're stating a condition "exterior" to the integral and involving x. That makes no sense at all...
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6

    Re: Tricky Integral

    Quote Originally Posted by Moo View Post
    \begin{aligned} \int_{-1}^1 e^{-|t-x|} ~dx &=\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} ~dx+\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\leq t\}} ~dx \end{aligned}

    For the first integral, we can write
    \begin{aligned}\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} ~dx &=\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} \bold{1}_{\{t\leq 1\}} ~dx+\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} \bold{1}_{\{t\geq 1\}} ~dx \\ &=\int_{\max(-1,t)}^1 e^{t-x} ~dx \bold{1}_{\{t\leq 1\}} + 0\cdot \bold{1}_{\{t\geq 1\}} \\ &=\begin{cases}\int_{\max(-1,t)}^1 e^{t-x} ~dx &\text{ if } t\leq 1 \\ 0&\text{ if } t\geq 1\end{cases}\end{array}


    Same thing for the second integral, except that we'll consider t\geq -1 and t\leq -1
    The end of it...

    We get that \int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\leq t\}} ~dx=\begin{cases}\int_{-1}^{\min(1,t)} e^{-t+x} ~dx & \text{ if } t\geq -1 \\ 0 & \text{ if } t\leq -1 \end{cases}

    So in the end,

    \int_{-1}^1 e^{-|t-x|} ~dx=\begin{cases} \int_{\max(-1,t)}^1 e^{t-x} ~dx &\text{ if } t\leq -1 \\ \int_{-1}^{\min(1,t)} e^{-t+x} ~dx & \text{ if } t\geq 1 \\ \int_{\max(-1,t)}^1 e^{t-x} ~dx+\int_{-1}^{\min(1,t)} e^{-t+x} ~dx &\text{ if } t\in(-1,1)\end{cases}
    Last edited by Moo; June 19th 2011 at 11:30 AM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Tricky Integral
    Posted in the Calculus Forum
    Replies: 2
    Last Post: November 11th 2010, 09:06 AM
  2. tricky integral
    Posted in the Calculus Forum
    Replies: 6
    Last Post: November 24th 2009, 09:57 PM
  3. Tricky Integral
    Posted in the Calculus Forum
    Replies: 4
    Last Post: February 27th 2009, 09:52 PM
  4. Tricky integral
    Posted in the Calculus Forum
    Replies: 2
    Last Post: February 4th 2009, 10:17 AM
  5. Another Tricky Integral
    Posted in the Calculus Forum
    Replies: 3
    Last Post: September 8th 2008, 10:54 PM

Search Tags


/mathhelpforum @mathhelpforum