Hi
I'm trying to integrate the following:
$\displaystyle \int_{-1}^{1} e^{-\left | t-x \right |} \ dx \ \ \ \ t \in \mathbb{R}$
can you help me how to split the integral up ?
thx
Printable View
Hi
I'm trying to integrate the following:
$\displaystyle \int_{-1}^{1} e^{-\left | t-x \right |} \ dx \ \ \ \ t \in \mathbb{R}$
can you help me how to split the integral up ?
thx
$\displaystyle \displaystyle |t - x| = \begin{cases}t - x \textrm{ if }t - x \geq 0 \implies x \leq t \\ x - t \textrm{ if }t - x < 0 \implies x > t\end{cases}$
So
$\displaystyle \displaystyle \begin{align*} \int_{-1}^1{e^{-|t - x|}\,dx} &= \int_{-1}^1{e^{-(t - x)}\,dt} \textrm{ if }x \leq t \\ &= \int_{-1}^1{e^{x - t}\,dt}\end{align*}$
or
$\displaystyle \displaystyle \begin{align*} \int_{-1}^1{e^{-|t - x|}\,dx} &= \int_{-1}^1{e^{-(x - t)}\,dt} \textrm{ if }x > t\\ &= \int_{-1}^1{e^{t - x}\,dx}\end{align*}$
$\displaystyle \begin{aligned} \int_{-1}^1 e^{-|t-x|} ~dx &=\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} ~dx+\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\leq t\}} ~dx \end{aligned}$
For the first integral, we can write
$\displaystyle \begin{aligned}\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} ~dx &=\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} \bold{1}_{\{t\leq 1\}} ~dx+\int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\geq t\}} \bold{1}_{\{t\geq 1\}} ~dx \\ &=\int_{\max(-1,t)}^1 e^{t-x} ~dx \bold{1}_{\{t\leq 1\}} + 0\cdot \bold{1}_{\{t\geq 1\}} \\ &=\begin{cases}\int_{\max(-1,t)}^1 e^{t-x} ~dx &\text{ if } t\leq 1 \\ 0&\text{ if } t\geq 1\end{cases}\end{array}$
Same thing for the second integral, except that we'll consider $\displaystyle t\geq -1$ and $\displaystyle t\leq -1$
Sure it's a constant, but hmmm how to explain it... Have a look at the indicator functions in my post above.
Or try to think about it this way :
You're defining an integral with respect to x. And then you're stating a condition "exterior" to the integral and involving x. That makes no sense at all...
The end of it...
We get that $\displaystyle \int_{-1}^1 e^{-|t-x|} \bold{1}_{\{x\leq t\}} ~dx=\begin{cases}\int_{-1}^{\min(1,t)} e^{-t+x} ~dx & \text{ if } t\geq -1 \\ 0 & \text{ if } t\leq -1 \end{cases}$
So in the end,
$\displaystyle \int_{-1}^1 e^{-|t-x|} ~dx=\begin{cases} \int_{\max(-1,t)}^1 e^{t-x} ~dx &\text{ if } t\leq -1 \\ \int_{-1}^{\min(1,t)} e^{-t+x} ~dx & \text{ if } t\geq 1 \\ \int_{\max(-1,t)}^1 e^{t-x} ~dx+\int_{-1}^{\min(1,t)} e^{-t+x} ~dx &\text{ if } t\in(-1,1)\end{cases}$