Im stuck trying to find the limit of $\displaystyle (sqrt(x^2 + 12)-2*x)/(x-2)$ as x approaches 2
Alternatively, L'Hospital's Rule works nicely in this case since it is of the indeterminate form $\displaystyle \displaystyle \frac{0}{0}$.
$\displaystyle \displaystyle \begin{align*} \lim_{x \to 2}\frac{\sqrt{x^2 + 12} - 2x}{x - 2} &= \lim_{x \to 2}\frac{\frac{d}{dx}\left(\sqrt{x^2 + 12} - 2x\right)}{\frac{d}{dx}\left(x - 2\right)} \\ &= \lim_{x \to 2}\frac{\frac{x}{\sqrt{x^2 + 12}}-2}{1} \\ &= \lim_{ x \to 2}\frac{x}{\sqrt{x^2 + 12}} - 2\end{align*}$