Results 1 to 3 of 3

Thread: Find The maximum error (differentials in Calc3)

  1. #1
    No one in Particular VonNemo19's Avatar
    Joined
    Apr 2009
    From
    Detroit, MI
    Posts
    1,849

    Find The maximum error (differentials in Calc3)

    OK, here's the problem:

    The angle of elevation of the top of a hill is $\displaystyle 21^{\circ}\pm30''$ and the distance to the top of the hill is $\displaystyle (500\pm.3)\text{ m}$ . Find the maximum error in determining the height of the hill.

    So, I let $\displaystyle t$ be the distance to the top, $\displaystyle \theta$ be the angle of elevation, and $\displaystyle h$ be the height of the hill, then

    $\displaystyle h(t,\theta)=t\sin{\theta}$

    Now, the total differential is $\displaystyle dh=\frac{\partial{h}}{\partial{t}}dt+\frac{\partia l{h}}{\partial{\theta}}d\theta$

    Now what do I do?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    849

    Re: Find The maximum error (differentials in Calc3)

    Hello, VonNemo19!

    The angle of elevation of the top of a hill is: $\displaystyle 21^{\circ}\pm30''$
    and the distance to the top of the hill is: $\displaystyle (500\pm 0.3)\text{ m}$.
    Find the maximum error in determining the height of the hill.

    So, I let $\displaystyle t$ be the distance to the top, $\displaystyle \theta$ be the angle of elevation,
    and $\displaystyle h$ be the height of the hill, then: .$\displaystyle h(t,\theta)\:=\:t\sin{\theta}$

    Now, the total differential is: .$\displaystyle dh \:=\:\frac{\partial h}{\partial t}dt+\frac{\partial h}{\partial \theta}d\theta$
    Now what do I do?

    Do some math . . . Find $\displaystyle dh$ ... then substitute the given values.

    We have: .$\displaystyle h \:=\:t\sin\theta \quad\Rightarrow\quad \begin{Bmatrix}\dfrac{\partial h}{\partial t} &=& \sin\theta \\ \\[-3mm] \dfrac{\partial h}{\partial\theta} &=& t\cos\theta \end{Bmatrix}$

    Hence: .$\displaystyle dh \;=\;(\sin\theta)dt + (t\cos\theta)d\theta $


    We are given: .$\displaystyle \begin{Bmatrix}\theta &=& 0.3665 && d\theta &=& 0.0087 \\ t &=& 500 && dt &=& 0.3\end{Bmatrix}$ . (Angles are in radians.)

    Therefore: .$\displaystyle dh \;=\;(\sin0.3665)(0.3)(500\cos0.3665)(0.0087) \;=\;4.16860972$

    The maximum error is: .$\displaystyle dh \;\approx\;4.17\text{ m}$

    Follow Math Help Forum on Facebook and Google+

  3. #3
    No one in Particular VonNemo19's Avatar
    Joined
    Apr 2009
    From
    Detroit, MI
    Posts
    1,849

    Re: Find The maximum error (differentials in Calc3)

    Quote Originally Posted by Soroban View Post
    Hello, VonNemo19!


    Do some math . . . Find $\displaystyle dh$ ... then substitute the given values.

    We have: .$\displaystyle h \:=\:t\sin\theta \quad\Rightarrow\quad \begin{Bmatrix}\dfrac{\partial h}{\partial t} &=& \sin\theta \\ \\[-3mm] \dfrac{\partial h}{\partial\theta} &=& t\cos\theta \end{Bmatrix}$

    Hence: .$\displaystyle dh \;=\;(\sin\theta)dt + (t\cos\theta)d\theta $


    We are given: .$\displaystyle \begin{Bmatrix}\theta &=& 0.3665 && d\theta &=& 0.0087 \\ t &=& 500 && dt &=& 0.3\end{Bmatrix}$ . (Angles are in radians.)

    Therefore: .$\displaystyle dh \;=\;(\sin0.3665)(0.3)(500\cos0.3665)(0.0087) \;=\;4.16860972$

    The maximum error is: .$\displaystyle dh \;\approx\;4.17\text{ m}$

    OK, so good. This means that I was on the right track.


    So, the total differential is the same as the max error?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Differentials to calculate Maximum Error
    Posted in the Calculus Forum
    Replies: 2
    Last Post: Mar 13th 2010, 04:46 PM
  2. differentials.. find maximum percentage error
    Posted in the Calculus Forum
    Replies: 8
    Last Post: Dec 2nd 2009, 04:48 PM
  3. Replies: 2
    Last Post: Sep 29th 2009, 11:05 AM
  4. Replies: 2
    Last Post: Jul 11th 2009, 09:09 PM
  5. Differentials to estimate the maximum error
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Mar 27th 2009, 07:07 PM

Search Tags


/mathhelpforum @mathhelpforum