how do i intergrate
sqrt(t^2+t^4)dt?
thanks!
$\displaystyle \displaystyle \sqrt{t^2 + t^4} = \sqrt{t^2(1 + t^2)} = \sqrt{t^2}\sqrt{1 + t^2} = t\sqrt{1 + t^2}$.
So $\displaystyle \displaystyle \int{\sqrt{t^2 + t^4}\,dt} = \int{t\sqrt{1 + t^2}\,dt}$ which you can solve making the substitution $\displaystyle \displaystyle u = 1 + t^2$.