$\displaystyle \int\ dx /\sqrt(25+x^2)\\ $ on the interval (0,1). So I use x=5tany, and dx=5sec^2y...

I got it down to integral $\displaystyle 5sec^2y / \sqrt(25(1+tan^2y)\ $

and then substituting sec^2 for y=tan^2y...left me with 5sec^2y/5sec^2y..so Im left with the integral of 1, right?

Then I get y+C....but how do I solve for y...I'm really confused, did I do all the above steps the right way?