# Thread: The number of real solutions

1. ## The number of real solutions

Prove the following, if true; otherwise, provide/derive a counterexample/contradiction:

1. If $n\in\mathbb{N}$ and $x\in\mathbb{R}^{+}$, then $x^n+x^{\frac{1}{n}}+n = 0$ has no real solutions for all $n \geqslant 2$.

2. If $n\in\mathbb{N}$ and $x \in\mathbb{R}^{+}$, then $x^n+x^{\frac{1}{n}}-n = 0$ has a single real solution for all $n \geqslant 1$.

2. Originally Posted by TheCoffeeMachine
Prove the following, if true; otherwise, provide/derive a counterexample/contradiction:

1. If $n\in\mathbb{N}$, then $x^n+x^{\frac{1}{n}}+n = 0$ has no real solutions for $n \ge 1$.

With $\displaystyle{n=1\,,\,\,x+x+1=0\Longrightarrow x=-\frac{1}{2}}$

Tonio

2. If $n\in\mathbb{N}$, then $x^n+x^{\frac{1}{n}}-n = 0$ has a single real solution for all $n$.
.

3. Originally Posted by tonio
.
I'm sorry, it should have been $n\geqslant 2$ (and the second one for $n\geqslant 1$).
I noticed and edited it while you were replying. Any ideas for $n\geqslant 2$?