Results 1 to 2 of 2

Math Help - maximize with Lagrange

  1. #1
    Newbie
    Joined
    Jul 2007
    Posts
    5

    maximize with Lagrange

    Hey any idea and help is much appreciated Many thanks b
    Attached Thumbnails Attached Thumbnails maximize with Lagrange-b.jpg  
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,860
    Thanks
    742
    Hello, Bobby!

    4. An advertising agency spends x dollars on a newspaper campaign
    and a further y dollars promoting client's products on local radio.
    It receives a 15% commission on all sales that the client receives.
    The agency has $10,000 to spend in total.

    The client earns M dollars from its sales
    where: . M \;=\;\frac{100,000x}{50 + x} +\frac{40000y}{30 + y}

    Use the method of Lagrange multipliers to determine how much should be spent
    on advertising in newspapers and on radio to maximize the agency's net income.
    Give your answers correct to two decimal places.
    We have the function: . M \;=\;10^5\!\cdot\!\frac{x}{x+50} + 4\!\cdot\!10^4\!\cdot\!\frac{y}{y+30}
    and the constraint: . x + y \:\leq \:10^4

    Our function is: . F\;=\;10^5\!\cdot\!\frac{x}{x+50} + 4\!\cdot\!10^4\!\cdot\!\frac{y}{y+30} - \lambda(x + y - 10^4)


    Set the three partial derivatives equal to zero.

    . . \frac{\partial F}{\partial x} \: = \: \frac{50\!\cdot\!10^5}{(x+50)^2} - \lambda \: = \: 0\quad{\color{blue}[1]}

    . . \frac{\partial F}{\partial y} \: = \:\frac{12\!\cdot\!10^5}{(y+30)^2} - \lambda \: = \: 0\quad{\color{blue}[2]}

    . . \frac{\partial F}{\partial\lambda} \: = \;\;\; x + y - 10^4 \;\; = \: 0 \quad{\color{blue}[3]}


    From {\color{blue}[1]} and {\color{blue}[2]}, we have: . \frac{50\!\cdot\!10^5}{(x+50)^2} \;=\;\lambda \;=\;\frac{12\!\cdot\!10^5}{(y+30)^2}

    . . Then: . (y+30)^2 \;=\;\frac{6}{25}(x+50)^2\quad\Rightarrow\quad y \;=\;\frac{\sqrt{6}}{5}(x + 50) - 30

    Substitute into {\color{blue}[3]}: . x + \left[\frac{\sqrt{6}}{5}(x + 50) -30\right] \;=\;10^4\quad\Rightarrow\quad x + \frac{\sqrt{6}}{5}x + 10\sqrt{6} - 30 \;=\;10,000

    . . \left(\frac{5+\sqrt{6}}{5}\right)x \;=\;10(1003-\sqrt{6})\quad\Rightarrow\quad x \;=\;\frac{50(1003-\sqrt{6})}{5 + \sqrt{6}} \;=\;6715.564051


    Therefore: . \begin{Bmatrix}x & = & \$6715.56 \\ y & = & \$3284.44\end{Bmatrix}


    Note: the agency's income is 0.15M

    And someone check my work . . . please!
    .
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Using Lagrange multpliers to maximize volume
    Posted in the Calculus Forum
    Replies: 0
    Last Post: November 18th 2009, 07:17 AM
  2. maximize
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: November 14th 2008, 02:54 PM
  3. maximize
    Posted in the Calculus Forum
    Replies: 5
    Last Post: April 23rd 2008, 03:26 PM
  4. Please Help maximize!!
    Posted in the Algebra Forum
    Replies: 1
    Last Post: November 14th 2007, 07:27 PM
  5. Maximize
    Posted in the Calculus Forum
    Replies: 3
    Last Post: October 25th 2007, 06:08 AM

Search Tags


/mathhelpforum @mathhelpforum